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1 Introduction

Numerous academic studies have investigated relationships between health insurance status and a

wide variety of outcomes such as health care utilization, health status, labor supply, and partici-

pation in public assistance programs. In more than 70 articles surveyed by Gruber and Madrian

(2004), Levy and Meltzer (2004), and Buchmueller et al. (2005), nearly all parameters of interest

are identi�ed using a variety of parametric approaches.1

We develop the �rst nonparametric framework for studying the potential impact of universal

health insurance on the nation�s use of medical services. Within this framework, we study relation-

ships between insurance status and use of services (expenditures and number of provider visits)

in an environment of uncertainty about both counterfactual utilization outcomes and status quo

insurance status. Our empirical work exploits detailed data in the 1996 Medical Expenditure Panel

Survey (MEPS). To aid in identi�cation, we construct health insurance validation data for a non-

random portion of the sample based on insurance cards, policy booklets, and follow-back interviews

with employers and insurance companies.

Motivated by limitations inherent in self-reported insurance data, our analysis extends the non-

parametric literature on partially identi�ed probability distributions in several dimensions. First,

we provide sharp bounds on the conditional mean of a continuous or discrete random variable (in

our case health care utilization) for the case that a binary conditioning variable (insurance status) is

subject to arbitrary endogenous classi�cation error. In this environment, insurance reporting errors

may be arbitrarily related to true insurance status and health care use. Second, we formally assess

how statistical identi�cation of a treatment e¤ect decays with the degree of uncertainty about the

status quo. Our approach extends the nonparametric treatment e¤ect literature for the case that

some treatments are unobserved (especially Molinari, 2005).2 Third, we relax the nondi¤erential

independence assumption � evaluated by Bollinger (1996) and Bound et al. (2001) � embedded

in the classical errors-in-variables model. As an alternative, we evaluate the identifying power of

a weaker monotonicity assumption that misreporting of insurance status does not rise with the

1An exception is the study by Olson (1998) who uses semiparametric techniques to estimate the relationship
between women�s labor hours and the availability of health insurance through a spouse.

2To isolate identi�cation problems associated with partially unobserved insurance status as a conditioning variable
or treatment, we assume that other variables in the analysis are measured without error.
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level of utilization. Given the di¢ culty in identifying plausible instruments in our application, we

consider what can be identi�ed in the absence of instruments.3

Evidence from validation studies, which compare survey data with administrative data or follow-

back interviews with insurers or employers, suggests that surveys of health insurance contain clas-

si�cation errors. Error rates vary across surveys and may arise in part from di¢ culty recalling

duration of coverage and di¢ culty reporting the status of other family members. Using matched

surveys of employers and their employees, for example, Berger et al. (1998) �nd that 21% of the

workers and their employers disagree about whether the worker was eligible for insurance. Their

study appears to represent the only prior analysis of potentially mismeasured insurance status in an

econometric framework. Assuming exogenous measurement error in a classical errors-in-variables

setting (accounting for the binary nature of the mismeasured variable), they �nd that even non-

systematic reporting error seriously biases their estimated e¤ect of insurance eligibility on wage

growth.

In the only study to examine all sources of insurance, Nelson et al. (2000) conducted in-person

interviews with 351 reportedly insured adults using the Behavioral Risk Factor Surveillance System

(BRFSS) survey and interviews with insurers. They do not �nd evidence of large-scale misreporting

of current insurance status itself, but they �nd large inconsistencies in reported source of coverage

and duration of coverage.4 In other studies, estimated error rates vary across surveys for both

Medicaid and private insurance. Card et al. (2004) and Klerman et al. (2005), respectively, �nd

signi�cant error rates for reporting Medicaid in the CPS and the Survey of Income and Program

Participation (SIPP). In some surveys, underreporting Medicaid may be largely o¤set by overre-

porting other sources of coverage (Call et al. 2001; Davidson 2005). Studies �nd a narrower range

of errors in reporting private insurance (Berger et al. 1998; Davern et al. 2005; Nelson et al. 2000).

In all validation studies, the level of misreporting in cases that could not be veri�ed is unknown

and may be higher than among those who cooperated with the study. Nelson et al. (2000), for

example, excluded adults who did not complete permission forms to contact insurers.5 Furthermore,

3Using methods in Lewbel (2004), the treatment e¤ects could be point-identi�ed in certain cases if we had instru-
ments that a¤ect insurance status but not classi�cation error or the average treatment e¤ect. For related work on
potentially endogenous classi�cation errors in a linear regression framework, see Frazis and Loewenstein (2003).

4For example, when an insurer said an adult was insured for a year or less, the adult�s report agreed only 40% of
the time.

5Card et al.�s (2004) study of the SIPP and Klerman et al.�s (2005) study of the CPS exclude respondents who did
not provided Social Security numbers, which were used to match to MediCal administrative data. A Census Bureau
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a major limitation of this research is di¢ culty validating lack of insurance.

The presence of reporting errors compromise a researcher�s ability to make reliable inferences

about the status quo, and they further confound identi�cation of counterfactual outcomes associ-

ated with policies that would alter the distribution of insurance coverage within the population,

such as national health insurance.6 The Census Bureau now issues caveats about the accuracy of

insurance estimates from the CPS (DeNaves-Walt et al. 2005). Highlighting surprising degrees of

insurance classi�cation error in many popular national surveys - along with dramatic inconsisten-

cies in responses when experimental follow-up insurance questions have been posed - Czajka and

Lewis (1999) write:

�Until we can make progress in separating the measurement error from the reality of
uninsurance, our policy solutions will continue to be ine¢ cient, and our ability to measure
our successes will continue to be limited.�

Our analysis does not presume the existence of large-scale insurance classi�cation error in any

particular dataset. In fact, we �nd no evidence of large-scale error in the MEPS. Instead, we

formalize important identi�cation problems associated with even small degrees of potential error.

The next section discusses the MEPS data and our health insurance veri�cation strategy. Section

3 formalizes the statistical identi�cation problem associated with estimating the gap in service

use between the insured and uninsured under existing policies when insurance status is subject to

arbitrary patterns of classi�cation error. We derive bounds on the unknown utilization gap under

alternative assumptions about the nature and degree of reporting errors. We weaken the strict

nondi¤erential independence assumption embodied in the classical errors-in-variables framework

to allow for the possibility that using health services may inform a patient of her true insurance

status.

Section 4 investigates what can be learned about the impact of national health insurance on the

use of health services. We show how common monotonicity assumptions, such as monotone treat-

ment response (MTR) and monotone treatment selection (MTS), can be combined to substantially

reduce uncertainty about the size of the policy e¤ect. Under an additional monotone instrumental

study found that in 2000, 30 percent of MediCal enrollment records lacked valid Social Security Numbers (Killion
2005). Hence, estimates based on surveys matched to MediCal records may not be representative of the MediCal
population.

6The extent to which universal coverage would increase use of services and expenditures has been estimated in a
variety of parametric studies (Institute of Medicine 2003). Estimates of incremental spending range from $34 to $69
billion per year depending on the statistical assumptions and choice of comparison groups.
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variable assumption that exploits information on age and health status combined with a natural

monotone restriction on the pattern of classi�cation errors, we can provide tight bounds on the im-

pact of universal coverage without relying on some of the more controversial assumptions involving

functional forms and independence. Section 5 concludes.

2 The Medical Expenditure Panel Survey

The data come from the 1996 Medical Expenditure Panel Survey (MEPS), a nationally represen-

tative household survey conducted by the U.S. Agency for Healthcare Research and Quality. In

the MEPS Household Component (MEPS HC), each family (reporting unit) was interviewed �ve

times over two and a half years to obtain annual data re�ecting a two year reference period (Cohen

1997). This paper focuses on the nonelderly population because almost all adults become eligible

for Medicare at age 65. The sample contains 18,851 individuals.

We study insurance and service use in July 1996. We focus on July because the 1996 MEPS

has a follow-back survey of employers, unions, and insurance companies which reported insurance

information as of July 1, 1996. We use 1996 data because that is the only year for which respondents

to the follow-back survey reported on the employees�and policyholders�insurance status rather than

whether the establishment o¤ered insurance.7 Studying insurance and service use in one month also

reduces the likelihood of confounding the dynamics of insurance status with misreported insurance

status because employment-related insurance typically covers an entire month.

2.1 Insurance Status Reported in the Household Component

The MEPS HC asks about insurance from a comprehensive list of all possible sources of insurance.

In the �rst interview, conducted between March and August 1996, MEPS HC asked the family

respondent about insurance held at any time since January 1st. Because employment-related

insurance is the most prevalent source of insurance, the family respondent was asked about all jobs

held by coresiding family members since January 1st, jobs family members had retired from, and

the last job held. The family respondent was asked whether the employee had insurance from each

job. Then the family respondent was asked whether anyone had:

� Medicare

� Medicaid
7These data are available at the AHRQ Data Center.
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� Champus/Champva

� For those who did not report Medicaid, any other type of health insurance through any state
or local government agency which provided hospital and physician bene�ts

� Health bene�ts from other state programs or other public programs providing coverage for
health care services8

� Other sources of private insurance, such as from a group or association, insurance company,
previous employer, or union.

For each source of insurance, MEPS HC asked which family members were covered and when.9

In the second interview, conducted between August and December 1996, MEPS HC asked

questions based on jobs and insurance reported to be held at the time of the �rst interview to

determine whether previously reported insurance was still held or when it ended. MEPS also

asked about new jobs and insurance from those jobs, public insurance acquired since the �rst

interview, and insurance acquired from other sources since the �rst interview. The recall period is

not especially long, typically four to seven months. Responses to the questions from the �rst and

second interview were used to construct indicators of insurance coverage at any time during July

1996 and uninsurance, the residual category. Family respondents reported 80:7% of the nonelderly

population were insured in July 1996 and 19:3% were uninsured (Table 1).

2.2 Service Use and Expenditures

In each interview, the MEPS asks about health care services used by all coresiding family members

since the last interview. The MEPS also obtains permission to interview a sample of the medical

providers identi�ed in the Household Component surveys to supplement household-reported health

care expenditure and source of payment information. We create measures of service use and ex-

penditures in July 1996: number of provider visits for ambulatory medical care (a medical provider

visit, hospital outpatient visit, or emergency room visit), an indicator for whether the sample per-

son had a hospital stay or ambulatory services, and expenditures for hospital stays and ambulatory

8A very small number of individuals are reportedly covered through Aid to Families with Dependent Children
(AFDC) or Supplemental Security Income (SSI), and these are counted as Medicaid. Other sources, such as the
Veterans Administration and the Indian Health Services, are not included in measures of hospital/physician insurance.

9State-speci�c program names are used in the questions. Single-service and dread disease plans are not included
in measures of hospital/physician insurance. Insurance status is not imputed to families with missing data, which
are rare.
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services. Twenty-one percent of the (weighted) sample used medical care in that month.10 Persons

who the family respondent said were insured in July were nearly 80% more likely to have used

medical care (22:5% of the insured versus 12:7% of the uninsured, Table 1). The mean number of

provider visits is also much greater for the reportedly insured, as are mean expenditures.

2.3 Veri�cation Data

We use detailed data to identify sample members for whom there is evidence corroborating their

insurance status. The 1996 MEPS includes three sources that can be used to con�rm health

insurance reported by families: (1) the HC interviewers ask respondents to show insurance cards,

(2) the HC interviewers ask respondents to provide policy booklets, and (3) separate interviews

were conducted with family members�employers and insurance companies. Respondents for the

family, employers, or insurance companies could err in reporting a person�s insurance status; none

provides a gold standard of information. Nonetheless, we use con�rmations of insurance status

to formally verify the insurance status of some sample members. This approach represents a

compromise between taking reported insurance status at face value for all sample members and

discarding valuable family respondents�reports about insurance status.

We label sample members as veri�ed insured if an insurance card was shown at the time of the

interview, a policy booklet was given to the interviewer, or if an employer or insurance company

con�rmed that the person was covered by insurance. We assume that a report that a sample member

is uninsured is accurate as long as there is no contradictory information from any family member�s

employers and all employers provided data. The person�s insurance status was not veri�ed (but

not assumed to be incorrect) if there were insu¢ cient veri�cation data or if employers or insurance

companies contradicted the family respondent. Details are provided in a detailed data appendix

available upon request.

As shown in Table 1, we �nd that 80:2% of the reportedly insured were con�rmed as insured by

a card, policy booklet, or an establishment. For the few cases in which a respondent produced an

insurance card but the establishment reported that the person was uninsured, we treat these cases

as veri�ed insured based on the physical evidence of insurance. Among the reportedly uninsured,

10 In the MEPS, outpatient prescription medications, medical supplies, and durable medical equipment are not
linked to speci�c months; these expenditures are excluded.

6



11:7% are veri�ed (Table 1). This relatively low number re�ects the lack of an employed family

member in some uninsured families and the lack of response by some employers. Recall that

uninsurance is veri�ed under this strategy only if all of the family�s employers responded and

con�rmed that they did not provide insurance to the sample member. Overall, 67:0% of the sample

was veri�ed.

3 The Identi�cation Problem

To evaluate the impact of inaccurate insurance classi�cations, we introduce notation that distin-

guishes between classi�ed insurance status and actual insurance status. In this section, we focus on

identi�cation issues at the population level; when presenting empirical estimates, we also consider

the uncertainty created by sampling variability. Let I� = 1 indicate that a person is truly insured,

with I� = 0 otherwise. We observe the self-reported counterpart I. A latent variable Z� indicates

whether a report is accurate. If I and I� coincide, then Z� = 1; otherwise, Z� = 0. Let Y = 1

indicate that I is veri�ed to be accurate (i.e., Z� is known to equal 1). If Y = 0, then Z� may be

either 1 or 0.11 In no case is the value of Z� assumed to be 0.12

Let U denote the amount of health care services consumed during the reference period. Typi-

cally, the amount of care is measured as health expenditures or number of provider visits. Policy-

makers are also interested in the proportion of the population that uses any medical care, in which

case U can be treated as a binary variable. In this section, we investigate what can be learned

about the utilization gap between the insured and uninsured,

� = E(U jI� = 1)� E(U jI� = 0), (1)

when true insurance status, I�, is unobserved for part of the sample.13 In Section 4, we focus on

the impact of universal coverage.

The utilization gap� is not identi�ed since we observe E(U jI) but not E(U jI�). Our objective is

to provide worst-case bounds on �. To partially identify E(U jI�), we will �rst derive bounds on the
11 In their analysis of testing for environmental pollutants, Dominitz and Sherman (2004) were the �rst to formalize

the idea of distinguishing between �veri�ed�and �unveri�ed�observations in the data.
12That is, we conservatively allow for the possibility that the MEPS insurance classi�cation is accurate even if the

classi�cation is not con�rmed by a card, booklet, employer, or insurance company.
13Our notation leaves implicit any other covariates of interest. We focus on bounding the utilization gap for the

nonelderly population as a whole, but it is straightforward to condition on subpopulations of interest. Note that we
are not estimating a regression, and there are no regression orthogonality conditions to be satis�ed.
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fraction of the population that consumes no more than a particular amount of care conditional on

unobserved insurance status, P (U � tjI�). We can then provide bounds on E(U jI�) by integrating

over these worst-case probabilities.

Using Bayes�rule, we can write

P (U � tjI� = 1) = P (U � t; I� = 1)
P (I� = 1)

. (2)

Neither the numerator nor the denominator are identi�ed, but assumptions on the pattern of

classi�cation errors can place restrictions on relationships between the unobserved quantities. Let

�+t � P (U � t; I = 1; Z� = 0) and ��t � P (U � t; I = 0; Z� = 0) denote the fraction of false positive

and false negative insurance classi�cations, respectively, among those whose medical consumption

did not exceed t. Let �0+t � P (U > t; I = 1; Z� = 0) and �0�t � P (U > t; I = 0; Z� = 0) denote

the analogous fractions among those whose use of care exceeded t. We can then decompose the

numerator and denominator in (2) into identi�ed and unidenti�ed quantities:

P (U � tjI� = 1) = P (U � t; I = 1) + ��t � �+t
P (I = 1) +

�
��t + �

0�
t

�
�
�
�+t + �

0+
t

� (3)

where P (U � t; I = 1) and P (I = 1) are identi�ed by the data. In the numerator, ��t � �+t

re�ects the unobserved excess of false negative vs. false positive insurance classi�cations among

those whose use of services did not exceed t. In the denominator,
�
��t + �

0�
t

�
�
�
�+t + �

0+
t

�
re�ects

the unobserved excess of false positive vs. false negative insurance classi�cations within the entire

population. Utilization among the uninsured, P (U � tjI� = 0), can be decomposed in a similar

fashion.

We now assess what can be learned about � under various sets of assumptions. First, we

derive �arbitrary error�bounds that impose no structure on the distribution of false positives and

false negatives. We next examine the identifying power of two common independence assumptions.

Because these independence assumptions may not be plausible in our application, we introduce

weaker variants of these assumptions.

3.1 Arbitrary error bounds

Following Horowitz and Manski (1995) and the literature on robust statistics (e.g., Huber 1981),

we can study how identi�cation of an unknown parameter varies with the con�dence in the data.
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Consider a lower bound on the fraction of accurate classi�cations among unveri�ed cases:

P (Z� = 1jY = 0) � v. (4)

If v = 1, then � is point-identi�ed. We evaluate patterns of identi�cation decay as v departs from

1. Molinari�s (2005) treatment e¤ect analysis (discussed in Section 4) implicitly sets v = 0. Since

we do not observe I� when Z� = 0, the data alone cannot logically reveal a particular value of

v. Nevertheless, we consider candidate values for v based on Hill�s (2006) detailed exploration of

the accuracy of self-reported insurance status in the MEPS. Based on evidence regarding rates of

inconsistencies between self-reports and validation information (e.g., from employers and insurance

companies), we focus on two values of v: 0:74 and 0:95. The larger value relies on an assumption that

a presumed upper bound error rate among those reporting private insurance can be extrapolated

to the population reporting public insurance. It also links error rates among reportedly uninsured

individuals with at least one employed family member to those uninsured with no employed family

member. The smaller value, 0:74, requires less extrapolation. Details are provided in the appendix

below. If the researcher is unwilling to assume anything about the unveri�ed responses, then

identi�cation can be studied for the case that v is set to 0. At any rate, we can assess the sensitivity

of conclusions to the degree of con�dence in the data.

We begin by logically determining the lowest feasible value of P (U � tjI� = 1). Di¤erentiating

the right hand side of (3), we �nd that this quantity is increasing in �0+t , the unobserved fraction

of individuals with U > t misclassi�ed as being insured, and in ��t , the unobserved fraction of

individuals with U � t misclassi�ed as being uninsured. As a worst-case possibility for the lower

bound, we must therefore set �0+t = ��t = 0 to obtain:

P (U � tjI� = 1) � P (U � t; I = 1)� �+t
P (I = 1)� �+t + �0�t

. (5)

While �+t and �
0�
t are unobserved, their ranges are restricted. The unobserved fraction that was

falsely classi�ed as insured, �+t = P (U � t; I = 1; Z� = 0), cannot exceed the observed fraction

that was classi�ed as insured with unknown insured status. Nor can this fraction exceed the total

allowed fraction of misclassi�ed cases, �(v) � (1� v)P (Y = 0). Similarly, the unobserved fraction

of individuals that was falsely classi�ed as being uninsured, �0�t = P (U > t; I = 0; Z� = 0), cannot

exceed the observed fraction that was classi�ed as being uninsured with unknown insured status;
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nor can it exceed the total fraction of misclassi�ed cases:

0 � �+t � min f�(v); P (U � t; I = 1; Y = 0)g � �+t

0 � �0�t � min f�(v); P (U > t; I = 0; Y = 0)g � �0�t .

To �nd the lower bound of P (U � tjI� = 1), we must �nd the minimum feasible value for the

right-hand side (5). Therefore, for any candidate value of �+t , we need �
0�
t to attain its maximum

allowed value conditional on �+t :

�0�t = min
n
�(v)� �+t ; �0�t

o
= min

�
�(v)� �+t ; P (U > t; I = 0; Y = 0)

	
.

The objective then becomes one of minimizing

P (U � t; I = 1)� �+t
P (I = 1)� �+t +min

�
�(v)� �+t ; P (U > t; I = 0; Y = 0)

	 (6)

over feasible values of �+t .

De�ne �+ot � �(v) � P (U > t; I = 0; Y = 0), the critical value of �+t which makes the two

arguments in the min function equal. First consider values of �+t � �+ot . For such values, the

derivative of (6) with respect to �+t is negative; therefore, we can exclude as potential candidates

any values of �+t less than �
+
tmin � max

n
0;min

n
�+t ; �

+o
t

oo
. For �+t > �

+o
t , the derivative has the

same sign as

�Lt � P (U � t; I = 1)� P (U > t; I = 1)� �(v): (7)

When this quantity is negative, we must raise �+t to its maximum feasible value, �+t ; otherwise, we

set �+t equal to �
+
tmin.

Similar logic provides an upper bound on P (U � 1jI� = 1). After de�ning �Ht � P (U > t; I =

1)� P (U � t; I = 1)� �(v), the preceding results establish the following proposition:

Proposition 1: Let P (Z� = 1jY = 0) � v, and suppose that nothing is known about the pattern
of false positive and false negative reporting errors. Then the mean utilization rate among the truly

insured is bounded sharply as follows:Z
UdFH � E(U jI� = 1) �

Z
UdFL

using the distribution functions

FL(t) =
P (U � t; I = 1)� �+t

P (I = 1)� �+t +min
�
�(v)� �+t ; P (U > t; I = 0; Y = 0)
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FH(t) =
P (U � t; I = 1) + ��t

P (I = 1) + ��t �min
�
�(v)� ��t ; P (U > t; I = 1; Y = 0)

	 .
and values

�+t =

8<: min f�(v); P (U � t; I = 1; Y = 0)g if �Lt < 0

max f0;min fP (U � t; I = 1; Y = 0); �(v)� P (U > t; I = 0; Y = 0)gg otherwise

��t =

8<: min f�(v); P (U � t; I = 0; Y = 0)g if �Ht � 0

max f0;min fP (U � t; I = 0; Y = 0); �(v)� P (U > t; I = 1; Y = 0)gg otherwise.

Analogous bounds for the utilization rate among the uninsured, E(U jI� = 0), are obtained by

replacing I = 1 with I = 0 and vice versa. Notice that increasing v narrows the bounds over some

ranges of v but not others, and the rate of identi�cation decay can be highly nonlinear as v declines.

Kreider and Pepper�s (2005) Proposition 2 bounds apply as a special case when the outcome U is

binary and v = 0.14

We next turn to our �rst set of empirical results. We compute a lower bound on the utilization

gap, �, by subtracting the upper bound on E(U jI� = 0) from the lower bound on E(U jI� = 1).

Similarly, we compute an upper bound by subtracting the lower bound on E(U jI� = 0) from the

upper bound on E(U jI� = 1).

3.2 Arbitrary error results

Figures 1(a)-(c) trace out estimated bounds on the utilization gap, �, as a function of v for any

use of services, number of provider visits, and expenditures, respectively. Following much of the

classi�cation error literature, we focus on cases in which at least half the unveri�ed classi�cations are

assumed to be accurate.15 The widest sets of bounds in the �gures correspond to the Proposition 1

bounds. For all sets of bounds, the �gures depict the 5th percentile lower bound and 95th percentile

upper bound.16

When v = 1, � is point-identi�ed as the self-reported gap, P (U = 1jI = 1)�P (U = 1jI = 0) =

0:098. Accounting for sampling variability, the gap lies within [0:086; 0:110]. The point estimates
14They study how labor force participation varies with disability status given a lack of knowledge of any particular

respondent�s true disability status. Our Proposition 1 extends their methodology by considering continuous outcomes
and by assessing identi�cation for values of v greater than 0 within unveri�ed classi�cations. Their analysis does not
impose our assumption that all veri�ed cases are accurate.
15That is, the data are more informative than their converse (see, e.g., Bollinger (1996), and Frazis and Loewenstein

(2003)).
16We account for sampling variability using balanced repeated replication methods that account for the complex

survey design (Wolter, 1985).
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for the gap in average number of provider visits and expenditures are 0:19 and $77, respectively,

with ranges [0:15; 0:23] and [$49; $102] after accounting for sampling variability. The wider bounds

on expenditures re�ect greater variability in expenditures.

Taken at face value (re�ecting the values in Table 1), the data indicate that the insured consumed

substantially more health services than the uninsured. In the absence of additional assumptions,

however, we see in the �gures that identi�cation of � decays rapidly as v departs from 1. The

lower bounds on � are particularly sensitive to the value of v. Indeed, classi�cation error rates as

low as 1 to 2% are su¢ cient to create uncertainty about whether expenditures and provider visits

are truly higher among the insured than among the uninsured (Figures 1b, c).17

Without stronger assumptions on the distribution of classi�cation errors, we cannot be con�dent

that the insured consume more health services than the uninsured unless virtually all classi�cations

are known to be accurate. This represents an important negative result: being almost fully con�dent

in the accuracy of the data is not enough, by itself, to be informative about even the sign of the

utilization gap between the insured and uninsured.

3.3 Independence assumptions

The parameter bounds thus far have allowed for arbitrary patterns of insurance classi�cation errors,

including the possibility that reporting errors are endogenously related to true insurance status or

the health care utilization outcome. In contrast, most economic research presumes that measure-

ment error is exogenous to the extent that it exists at all. In this section, we make transparent the

identifying power of two common (nonnested) independence assumptions that tighten the Propo-

sition 1 bounds. Then we introduce a weaker alternative assumption that is more plausible in our

context.

First, a researcher might consider a �contaminated sampling�assumption that insurance clas-

17The discrete changes in slopes at some values of v are most easily understood by considering the binary case
in Figure 1a. As a worst case lower bound on P (U = 1jI = 1), we must make the unknown false positive quantity
a = P (U = 1; X = 1; Z = 0) among health care users as large as possible and then make the unknown false negative
quantity b = P (U = 0; X = 0; Z = 0) among non-users as large as possible conditional on a. For su¢ ciently low
values of v, nothing prevents a from being as large as P (U = 1; X = 1; Y = 0), the observed fraction of health
care users who report health insurance coverage without veri�cation, and nothing prevents b from being as large as
P (U = 0; X = 0; Y = 0), the observed fraction of non-users who report being uninsured without veri�cation. Once v
exceeds 0:49, the allowed total degree of misclassi�cation is small enough that b must begin declining with v. Then
once v exceeds 0:89, a must also start declining with v. Similar patterns apply to the other sets of bounds.
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si�cation errors arise independently of true insurance status:18

P (I� = 1jZ�) = P (I� = 1). (8)

This assumption may be relatively innocuous compared with the set of homogeneity and exogeneity

assumptions imposed in standard parametric frameworks. Still, stories can be told in which this

assumption may be violated. Reporting errors may not be orthogonal to true insurance status

if, for example, better educated respondents are both more likely to be insured and more likely

to accurately answer survey questions. Similarly, Card et al. (2004) provide evidence that errors

in reporting Medicaid coverage vary with family income, which is also a key aspect of Medicaid

eligibility.

Alternatively, or in combination with (8), a researcher might place restrictions on the relation-

ship between insurance classi�cation errors and the use of health services. In the popular classical

measurement error framework, reported insurance status does not depend on the level of health

care utilization conditional on true insurance status:

P (I = 1jI�; U) = P (I = 1jI�) for I� = 0; 1. (9)

Aigner (1973) and Bollinger (1996) study this type of �nondi¤erential�classi�cation error for the

case of a binary conditioning variable. When the independence assumption (9) holds, Bollinger�s

Theorem 1 can be used to show that � is bounded below by the reported utilization gap E(U jI =

1) � E(U jI = 0) (> 0) as long as the extent of insurance classi�cation errors is not too severe.19

Re�ecting well-known attenuation bias associated with random measurement error, the magnitude

of the reported utilization gap represents a downward-biased estimate of the magnitude of the true

utilization gap.20 Berger et al. (1998) impose the nondi¤erential errors assumption in the only

previous econometric analysis that allows for misreported insurance status.

Bound et al. (2001, p. 3725) note, however, that in general the nondi¤erential measurement

error assumption is strong and often implausible. In our context, the nondi¤erential assumption

18The sampling process is referred to as �corrupt�when nothing is known about the pattern of reporting errors,
as assumed in Proposition 1.
19Speci�cally, the true utilization gap can be no larger than the reported gap as long as the false positive rate plus

the false negative rate is less than one: P (I = 1jI� = 0) + P (I = 0jI� = 1) < 1.
20The observed correlation between use of services and reported insurance, Cov(U; I), is positive. If this correlation

were instead negative, then � would be bounded above by E(U jI = 1)� E(U jI = 0).
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is most likely to be violated if using health care informs respondents about their true insurance

status. For example, a health care provider may enroll a patient in Medicaid. More generally, a

regular user of health services (or a high expenditure user) is more likely to know her insurance

status than an infrequent user of services.

We propose a weaker alternative assumption on the pattern of reporting errors. Relaxing the

nondi¤erential assumption in (9), we suppose that the probability of misreporting insurance status

does not rise with the level of health care utilization:

P (I = 1jI� = 0; U1) � P (I = 1jI� = 0; U0) (10)

P (I = 0jI� = 1; U1) � P (I = 0jI� = 1; U0)

for U1 � U0. The nondi¤erential assumption represents a special case. In the next section, we illus-

trate how the identifying power of this monotone �nonincreasing error rate�assumption compares

with the standard nondi¤erential errors assumption. We also separately evaluate the sensitivity of

the bounds to departures from the exact equality in (9).

3.4 Results under independence and partial independence

The dashed lines in Figures 1(a-c) trace out the estimated bounds under the contaminated sampling

assumption in (8).21 Compared with the case of arbitrary errors, we �nd that the critical value

of v that identi�es � > 0 declines from about 0:95 to about 0:82 for any use of services, from

about 0:98 to about 0:91 for number of visits, and from nearly 1 to about 0:79 for expenditures.

At v = 0:95, the width of the bounds decreases by 41% to [0:067; 0:175] for any use of services

(Table 2). Similarly, the bounds narrow 66% to [0:08; 0:25] for number of visits and narrow 56% to

[$38; $102] for expenditures.

Under nondi¤erential errors, the lower bound on� is given by the self-reported value of� across

all values of v. Therefore, the insured are identi�ed to use more health services than the uninsured

regardless of the extent of reporting error. These bounds are presented as shaded identi�cation

regions in the �gures, with special case values of v provided in the right-hand column of Table

2. Even if half of the unveri�ed classi�cations may be misreported (v = 0:5), � is constrained to

21We numerically computed bounds under the various independence assumptions by searching over logically allowed
combinations of false positives and false negatives

�
��t ; �

0�
t ; �

+
t ; �

0+
t

	
.
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lie within the 11-point range [0:098; 0:207] for any use of services. As the degree of misreporting

rises, the fractions of false positive and false negative reports must rise jointly, thus constraining

the increase in uncertainty about the use of service probabilities. For v = 0:95, this uncertainty

narrows to the one-point range [0:098; 0:105]; the gap in the number of visits lies within [0:19; 0:22]

while the gap in expenditures lies within [$77; $78].

As discussed above, strict nondi¤erential independence may not be plausible in the context of

insurance reporting errors. As seen in Figures 1(a)-(c) and the last column of Table 2, the bounds

on � expand when replacing strict independence with the assumption in (10) that error rates do

not increase with the level of utilization. The bounds remain quite informative compared with case

of arbitrary error patterns. Compared with that case, the critical value of v that identi�es � > 0

declines from 0:95 to 0:80 for any use of services, from 0:98 to 0:93 for number of visits, and from

nearly 1 to 0:75 for expenditures. At v = 0:95, the bounds on � for the use of services are less than

one-�fth as wide as the bounds under arbitrary errors, and we can tightly bound � to lie within

the narrow 3 point range [0:081; 0:112]. Mean number of visits and expenditures are bounded to

lie within [0:15; 0:23] and [$71; $83], respectively.

We also investigate the sensitivity of the bounds to departures from the strict equality in (9).

In particular, we generalize the standard nondi¤erential error assumption as follows:

jP (I = 1jI�; U)� P (I = 1jI�)j � � (11)

for some � 2 [0; 1]. Strict nondi¤erential independence holds when � = 0, while the case of

arbitrary errors follows when � = 1. The nondi¤erential bounds naturally widen for larger values

of �. Appendix Table 1A illustrates the sensitivity of the bounds for various values of �. For

expenditures, we continue to identify � as being positive � for any value of v �unless reported

insurance status, conditional on true insurance status, di¤ers more than 12 percentage points (i.e.,

unless � > 0:12) across di¤erent values of utilization. The analogous critical values for provider

visits and any use of services are 0:07 and 0:08, respectively. For v = 0:95, we continue to identify

� as being positive if � < 0:35 for any use, � < 0:30 for visits, and � < 0:40 for expenditures. Thus,

this �partial nondi¤erential independence�assumption can provide strong identi�cation power even

when strict independence is substantially relaxed.
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4 Utilization under Universal Health Insurance

We now turn to inferences about health care utilization under a hypothetical policy of universal

health insurance. Let U(I� = 1) denote the amount of health services an individual would have

used in July 1996 if insured. This outcome is observed in the data only for sample members who

are veri�ed to be currently insured; it is unobserved for those veri�ed to be uninsured and for those

whose insurance status is not veri�ed. We wish to learn the population�s expected utilization if

everyone were insured, E[U(I� = 1)]. If current insurance status were randomly assigned, then

the utilization among the currently insured, E(U jI� = 1), would represent the best prediction of

the utilization rate under universal coverage. Since I� is not observed for all individuals, we could

instead bound E(U jI� = 1) using the methods derived in the previous sections.

Of course, the observed distribution of health insurance coverage in the population is not ran-

domly assigned. Instead, insurance status is a¤ected by characteristics potentially related to the

use of medical resources. For example, families that expect to use health services may be more

likely to acquire health insurance. In that case, an observed positive association between insurance

coverage and utilization re�ects not only the e¤ect of insurance on use of services but also the e¤ect

of anticipated service use on insurance status. More generally, insurance status may depend on

individual and family characteristics that also determine health care use.

In the absence of random assignment or other assumptions, the quantity E[U(I� = 1)] is not

identi�ed even if all insurance classi�cations are known to be accurate. Unlike identi�cation of the

conditional utilization rate E(U jI� = 1), identi�cation of the �treatment�outcome E[U(I� = 1)]

requires knowledge about the counterfactual utilization rate of the uninsured had they instead been

insured. Uncertainty about the accuracy of insurance classi�cations, the focus of the current paper,

further complicates identi�cation of counterfactuals.

To bound the impact of universal coverage on utilization, we begin by using the law of total

probability to decompose the projected utilization rate under universal coverage into veri�ed and

unveri�ed current insurance status:

E[U(I� = 1)] = E[U(I� = 1)jY = 1]P (Y = 1) + E[U(I� = 1)jY = 0]P (Y = 0). (12)

The data identify P (Y = 1) and P (Y = 0) but neither utilization term. The �rst term involving
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veri�ed insurance status can be written as

E[U(I� = 1)jY = 1] = E(U jI� = 1; Y = 1)P11 + E[U(I� = 1)jI� = 0; Y = 1](1� P11) (13)

where P11 � P (I� = 1jY = 1) denotes the status quo insured rate among veri�ed cases. All of the

terms in (13) are observed except for the counterfactual expected utilization among those uninsured

under the status quo, E[U(I� = 1)jI� = 0; Y = 1]. Without additional assumptions, this quantity

may lie anywhere within the support of U , [0; supU ].

Returning to (12) and decomposing the third term involving the unveri�ed cases obtains:

E[U(I� = 1)jY = 0] = E(U jI� = 1; Y = 0)P10 + E[U(I� = 1)jI� = 0; Y = 0](1� P10) (14)

where P10 � P (I� = 1jY = 0) is the status quo insured rate among unveri�ed cases. None of

the quantities in (14) are identi�ed. We do not know P10, and we cannot match health care use

outcomes to insurance status when insurance status is unknown.

Implicitly assuming that v = 0, Molinari (2005) shows that we can learn something about the

�rst term, E(U jI� = 1; Y = 0), if the researcher has outside information restricting the range of

P10 (denoted p in her framework).22 In her innovative analysis, she estimates the treatment e¤ect

of drug use on employment when drug use is unobserved for part of the sample. As shown below,

we extend her analysis in two dimensions when v > 0. First, an assumption on v translates into

internally-generated restrictions on P10 as a function of v. The identifying power of this information

depends on the joint distribution of the outcome variable, the self-reported conditioning variable,

and the individual�s validation status. Second, an assumption on v allows us to restrict the expected

utilization rate among the unveri�ably truly uninsured, E(U jI� = 0; Y = 0), which in turn allows us

to tighten Molinari�s bounds on the expected utilization rate among the unveri�ably truly insured,

E(U jI� = 1; Y = 0). In the �gures that follow, Molinari�s framework can be used to provide sharp

bounds at the points v = 0 and v = 1. Our extension allows us to �ll in identi�cation patterns for

values of v between 0 and 1.

We proceed by writing the insured rate among unveri�ed cases as a function of P (I = 1jY = 0),

false positive, and false negative classi�cation rates:

P10 = P (I = 1jY = 0) + P (I = 0; Z� = 0jY = 0)� P (I = 1; Z� = 0jY = 0).
22 In Molinari�s framework, Y = 0 (our notation) denotes survey nonresponse instead of lack of veri�cation. Molinari

(2004) presents a general treatment of the identi�cation problem for a variety of measurement issues.
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Allowing the unidenti�ed terms to vary over their feasible ranges implies P10 2
�
P 10; P 10

�
where

P 10 � P (I = 1jY = 0)�min f1� v; P (I = 1jY = 0)g (15)

P 10 � P (I = 1jY = 0) + min f1� v; P (I = 0jY = 0)g .

When v = 0, P10 is trivially bounded within [0; 1]; at the other extreme when v = 1, P10 = P (I =

1jY = 0).

This knowledge about the range of P10 places restrictions on the utilization patterns of the

subpopulation of unveri�ed cases. We know that the distribution of utilization outcomes among

unveri�ed cases is a weighted average of the utilization levels among unveri�ed insured and unin-

sured cases:

P (U � tjY = 0) = P (U � tjI� = 1; Y = 0)P10 + P (U � tjI� = 0; Y = 0)(1� P10). (16)

For a particular value of P10, solving for the expected utilization rate among the unveri�ed currently

insured obtains

P (U � tjI� = 1; Y = 0) = P (U � tjY = 0)� P (U � tjI� = 0; Y = 0)(1� P10)
P10

. (17)

The quantity P (U � tjI� = 0; Y = 0) in the right-hand-side is nontrivially bounded if and only if

v > 0. In that case, we can use the methods developed in Section 3.1 to obtain


1(t; v) �
P (U � t; I = 0; Y = 0)� ��t

P (I = 0; Y = 0)� ��t +min
�
�(v)� ��t ; P (U > t; I = 1; Y = 0)

	
� P (U � tjI� = 0; Y = 0) � (18)


2(t; v) �
P (U � t; I = 0; Y = 0) + �+t

P (I = 0; Y = 0) + �+t �min
�
�(v)� �+t ; P (U > t; I = 0; Y = 0)

	
where ��t and �+t were de�ned in Proposition 1 and we rede�ne �Lt � P (U � t; I = 0; Y =

0)�P (U > t; I = 0; Y = 0)+�(v) and �Ht � P (U > t; I = 0; Y = 0)�P (U � t; I = 0; Y = 0)+�(v).

Varying P (U � tjI� = 0; Y = 0) within the feasible range [
1(t);
2(t)] in (17) reveals that

P (U � tjI� = 1; Y = 0) must lie within the range [GL(t; v); GH(t; v)] given by23

GL(t; v) � max

�
0;
P (U � tjY = 0)� (1� P10)
2(t; v)

P10

�
GH(t; v) � min

�
P (U � tjY = 0)� (1� P10)
1(t; v)

P10
; supU

�
.

23Note that v > 0 also directly places restrictions on E(U jI = 1; Y = 0). However, we can show that the direct
restrictions on this quantity represent a subset of the restrictions imposed on it indirectly via the restrictions on
E(U jI = 0; Y = 0).
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Then we can bound expected health care utilization among the unveri�ably truly insured as follows:Z
UdGH � E(U jI� = 1; Y = 0) �

Z
UdGL. (19)

Applying this result to the �rst term in (14) and varying E[U(I� = 1)jI� = 0; Y = j] within

[0; supU ] for j = 0; 1 in (13) and (14) yields the following sharp bounds on the population�s use of

health services under universal health insurance:24

Proposition 2. Given P (Z� = 1jY = 0) � v and a known value P10 2
�
P 10(v); P 10(v)

�
, the

population�s health care utilization rate under mandatory universal insurance coverage is bounded

sharply as follows:

E(U jI = 1; Y = 1)P (I = 1; Y = 1) + P10P (Y = 0)
Z
UdGH

� E [U(I� = 1)] � (20)

E(U jI = 1; Y = 1)P (I = 1; Y = 1) + P10P (Y = 0)

Z
UdGL

+ [P (I = 0; Y = 1) + (1� P10)P (Y = 0)] supU .

If P10 is unknown, the lower and upper bounds in (20) are replaced by the in�mum and supremum,

respectively, of these bounds over values of P10 2
�
P 10; P 10

�
.

Molinari�s (2005) Proposition 1 is similar except that her probability distributions Lp and Up (in

place of GL and GH) implicitly assume that v = 0 such that nothing is known about the reliability

of unveri�ed classi�cations. For that special case, the bounds in (20) collapse to Molinari�s bounds

after setting 
1(t) = 0 and 
2(t) = 1 in (18) and
�
P 10; P 10

�
= [0; 1]. Molinari allows for the

possibility that the researcher has outside information restricting P10 to a range narrower than

[0; 1] (including the possibility that P10 is known). In that case, something can be learned about

E[U(I� = 1)jY = 0] even though 
1(t) = 0 and 
2(t) = 1. Her bounds are as tight as possible

given her imposed assumptions, but the proposition above allows us to assess how identi�cation

decays with the degree of uncertainty about the reliability of the data.

For the binary utilization case, supU in Proposition 2 is naturally set equal to 1. Yet there

is no natural limit to the number of provider visits or dollars spent on medical services. Unless

24This analysis does not account for potential increases in gross prices for health care resulting from universal
coverage. Since such price increases would not increase utilization, these upper bounds on E(U jI = 1) should still
apply. We also assume that insurance coverage to the uninsured would be representative of the current mix of public
and private coverage available to the insured.
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a researcher is nevertheless willing to set an upper bound on U , it must be recognized that an

informative upper bound on E [U(I� = 1)] cannot be logically identi�ed under the weak conditions

speci�ed in Proposition 2. For our Proposition 2 empirical results, we set supU equal to 1:69 for

number of visits and to $655 for expenditures re�ecting mean values among individuals who (1)

perceived themselves to be in poor health at the time of the �rst interview and (2) were veri�ed to be

insured. These values re�ect the 93rd percentile for visits and the 98th percentile for expenditures.

We do not require any assumptions on supU for the Proposition 3 bounds or monotone instrumental

variable (MIV) bounds which follow.

4.1 Monotonicity assumptions

The preceding bounds can be narrowed substantially under common monotonicity assumptions on

treatment response and treatment selection. The monotone treatment response assumption (MTR)

speci�es that an individual�s utilization is at least as high in the insured state as in the uninsured

state:

Ui(I
� = 1) � Ui(I� = 0). (21)

Under monotone treatment selection (MTS), expected utilization under either �treatment�(insured

or uninsured) would be at least as high among those currently insured as among those currently

uninsured:25

E[U(I� = j)jI� = 1] � E[U(I� = j)jI� = 0] for j = 0; 1. (22)

The validity of this assumption depends on the process by which individuals have selected them-

selves into insured and uninsured status. This assumption is consistent with evidence from Miller

et al. (2004) who �nd that while the uninsured tend to be less healthy than the privately insured,

they tend to be healthier than those publicly insured (e.g., through Medicaid). The uninsured may

also have unobserved characteristics, such as attitudes toward care, that make them less likely to

seek care. To the extent that the uninsured are less health conscious, they may seek less preventive

care and wait longer before deciding to seek treatment for an ailment. In general, those who are

currently insured may have a greater propensity to use care than those who are currently unin-

25 In the July 1996 MEPS sample, the probability of using services among those classi�ed as being insured was 0:23
compared with 0:13 among the uninsured, and mean expenditures were $114 among the reportedly insured compared
with $36 among the reportedly uninsured (Table 1).
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sured. Using data from the SIPP to estimate a parametric structural model of health care use and

insurance coverage, Li and Trivedi (2004) �nd that a signi�cant part of the observed lower health

care use among the uninsured can be attributed to self-selection instead of the lack of insurance.26

When both MTR and MTS hold, we can use a result in Manski and Pepper (2000, Corollary

2.2) to obtain

E(U) � E [U(I� = 1)] � E(U jI� = 1).

The lower bound on the population�s use of services under universal coverage rises to E(U), the

status quo national utilization rate in the absence of universal coverage. The upper bound falls to

the status quo utilization rate among those currently insured. This result combined with the upper

bound on E(U jI� = 1) derived in Proposition 1 leads to the following proposition:

Proposition 3. Suppose that the MTR and MTS assumptions hold across the population and

P (Z� = 1jY = 0) � v. Then the expected use of services under insurance coverage is bounded above
by
R
UdFL where

FL(t) =
P (U � t; I = 1)� �+t

P (I = 1)� �+t +min
�
�(v)� �+t ; P (U > t; I = 0; Y = 0)

	 ,
�+t =

8<: min f�(v); P (U � t; I = 1; Y = 0)g if �Lt < 0

max f0;min fP (U � t; I = 1; Y = 0); �(v)� P (U > t; I = 0; Y = 0)gg otherwise

and �Lt � P (U � t; I = 1)� P (U > t; I = 1)� �(v).

In the empirical work that follows, we also consider the additional identifying power of the inde-

pendence and nonincreasing errors assumptions considered in Section 3.3.

4.2 Universal Coverage Results

Empirical results are presented in Table 3 and the bottom frames of Figures 2(a-c). Each set of

bounds for E [U(I� = 1)] is calculated with the insured rate among unveri�ed classi�cations, P10,

allowed to lie anywhere within its logically consistent range
�
P 10; P 10

�
.

The status quo fraction of the (nonelderly) population using health services in a month is 0:206.

For v = 1 (no classi�cation error) and no monotonicity assumptions, we estimate that the fraction

of the population using health services could fall by up to 2 percentage points to 0:182 or rise by

26Of course, their �nding relies in part on the types of parametric assumptions we are trying to avoid.
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up to 17 percentage points to 0:374. This projected range, given by [�12%, +82%] in percentage

terms, represents the well-known classical e¤ect of a mandatory policy given uncertainty about

counterfactuals (e.g., Manski, 1995). For mean number of visits and expenditures, the projected

ranges are [�27%, +54%] and [�23%, +105%], respectively. These results are presented in Table

3, Column (1).

As seen in Column (2), these ranges narrow dramatically under MTR and MTS. With v = 1,

the fraction using any services would rise by no more than 2 percentage points, a 9% increase. The

mean number of visits would rise by no more than four-tenths of a visit (a 10% increase), while per

capita expenditures would rise by no more than $15, a 15% increase. The lower bounds rise to the

status quo utilization rates.

Table 3 and Figures 2a-c also allow us to observe patterns of identi�cation decay as v departs

from 1. Without monotonicity assumptions, the upper bound on the fraction using any health

services under universal coverage rises from 0:374 when v = 1 (82% above the status quo) to 0:407

when v = 0:95 (98% above the status quo). When MTR and MTS are imposed, the upper bound

rises from 0:225 when v = 1 (9% above the status quo) to 0:240 when v = 0:95 (17% above the

status quo). The patterns are similar for provider visits and expenditures. For example, the upper

bound on mean provider visits when MTR and MTS are imposed rises from 0:45 when v = 1 (10%

above the status quo) to 0:49 when v = 0:95 (20% above the status quo). The upper bound on

mean expenditures rises from $114 (15% above the status quo) when v = 1 to $123 (24% above the

status quo) when v = 0:95.

These bounds can be narrowed further under stronger assumptions about the nature of report-

ing errors. Columns (3) and (4) present bounds on E [U(I� = 1)] under contaminated sampling and

nondi¤erential errors, respectively. As v declines from 1 to 0:95 under contaminated sampling, the

upper bound for mean visits barely rises from 0:45 to only 0:46. The change under nondi¤erential

errors is similar. For expenditures, the upper bound barely rises from $114 to $118 under contam-

inated sampling and remains nearly unchanged under nondi¤erential errors. For the fraction using

any services, the contaminated sampling assumption has substantially more identifying power for

smaller values of v; the upper bound is nearly �at for v < 0:9. The nondi¤erential assumption has

more immediate identifying power as v departs from 1.
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As in Section 3.5, we can examine the sensitivity of these results to departures from strict

independence. We �rst consider the assumption that error rates do not increase with utilization

(equation (10)). Suppose that MTR and MTS hold. Then as long as v is not much less than

0:75, the upper bound on E [U(I� = 1)] under nonincreasing error rates (for all three measures

of utilization) is closer to the upper bound under nondi¤erential errors than to the upper bound

under arbitrary errors (see Figures 2a-c). For v = 0:95, for example, Column (5) of Table 3 shows

that the upper bound rises only four-tenths of a percentage point from 0:226 under nondi¤erential

errors to 0:230 under nonincreasing error rates.

Second, we examine the e¤ects of varying � in Equation (11) while assuming MTR and MTS

hold. Appendix Table 2A presents bounds on E [U(I� = 1)] under partial independence across

di¤erent values of �. Recall that � = 0 corresponds to the case of strict independence while � = 1

corresponds to the case of no independence. As � varies between 0 and 0:20 at v = 0:95, the upper

bound on the number of visits under universal coverage ranges from 0:45 and 0:49. Expenditures

range from $114 to $118.

4.3 Monotone Instrumental Variables

We next use monotone instrumental variables (MIV) techniques developed by Manski and Pepper

(2000) and extended by Kreider and Pepper (2005) to assess how the bounds can be narrowed when

combined with monotonicity assumptions linking utilization outcomes and observed covariates such

as age or health status. Consider, for example, age and use of health services. The incidence of

many health conditions rises with age, and many health conditions are persistent once developed.

These tendencies suggest that the utilization rate among adults under universal coverage would be

nondecreasing in age.

Formally, consider the utilization rate at some age, age0, above some threshold, age0. We set

age0 equal to 30 years of age. The MIV restriction implies the following inequality restriction:

age0 � age1 � age0 � age2 (23)

=) E [U (I� = 1) jage1)] � E [U (I� = 1) jage0)] � E [U (I� = 1) jage2)] .

The conditional probabilities in Equation (23) are not identi�ed, but they can be bounded

using the methods described above. Let LB(age) and UB(age) be the known lower and upper
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bounds, respectively, given the available information on E(U jI�; age); in computing these bounds,

we assume that MTR and MTS continue to hold. Then using Manski and Pepper (2000, Proposition

1), we have

sup
age12[age0; age0]

LB(age1) � E [U (I� = 1) jage0)] � inf
age2�age0

UB(age2). (24)

The MIV bound on expected utilization under universal coverage is obtained using the law of total

probability:

X
age0�U

P (age = age0)f sup
age12[age0; age0]

LB(age1)g (25)

� E [U (I� = 1)] �X
age0�U

P (age = age0)f inf
age2�age0

UB(age2)g.

Thus, to �nd the MIV bounds on the utilization rate, one takes the appropriate weighted average

of the lower and upper bounds across the di¤erent values of the instrument. We treat age and

general health status as MIVs. We divide the population into 18 age groups: 0-30, 31-32, 32-34,

..., 63-64. Within each age group, we assume that use of services under universal coverage would

be nondecreasing in worse health across the following categories: poor/fair, good, very good, and

excellent.

This MIV estimator is consistent but biased in �nite samples. To account for this bias, we

employ Kreider and Pepper�s (2005) modi�ed MIV estimator that directly estimates and adjusts

for �nite-sample bias using Efron and Tibshirani�s (1993a) nonparametric bootstrap correction

method. Let Tn be a consistent analog estimator of some unknown parameter � such that the bias

of this estimator is bn = E(Tn)� �. Using the bootstrap distribution of Tn, one can estimate this

bias as bb = E�(Tn) � Tn, where E�(�) is the expectation operator with respect to the bootstrap

distribution. A bootstrap bias-corrected estimator then follows as T cn = Tn�bb = 2Tn�E�(Tn). In
our setting, the �nite bias is simulated from the bootstrap distributions of the estimated Proposition

3 bounds calculated for each MIV group.27

27See Kreider and Pepper (2005) for estimation details. Monte-carlo simulations have shown the approach to
e¤ectively correct for the �nite sample bias in a variety of di¤erent settings and to be asymptotically e¢ cient at
higher orders. See, for example, Parr (1983), Efron and Tibshirani (1993), Hahn et al. (2002), and Ramalho (2005).
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4.4 MIV Results

MIV results are presented in Table 3, Columns (6) and (7). We assess the identifying power of the

MIV assumption by comparing these columns with Columns (2) and (5) for the case of arbitrary

errors and nonincreasing error rates, respectively. In Column (2), identi�cation is achieved through

veri�cation and monotonicity assumptions alone. For v = 0:95 in that case, we estimated that the

fraction of the nonelderly population using health services would rise no more than 17% above the

status quo to 0:240. Under the additional MIV assumption in Column (6), we estimate that this

fraction would rise no more than 12% to 0:231. For v = 0:74, the upper bound improves from

0:266 to 0:246. Improvements in the upper bounds for mean number of visits and expenditures are

similar. Under the MIV assumption, the upper bound on the number of visits improves from 0:49

to 0:47 for v = 0:95 and from 0:54 to 0:50 for v = 0:74. The upper bound on expenditures improves

from $123 to $118 for v = 0:95 and from $134 to $123 for v = 0:74.

Combining MIV with the assumption of nonincreasing error rates, we �nd that the fraction

using services in a month would rise by no more than 1:8 percentage points to 0:224 when v = 0:95

and by no more than 2:5 percentage points to 0:231 when v = 0:74 (Table 3, Column (7)). Note

the improvements over the bounds without MIV in Column (5): 0:230 when v = 0:95 and 0:252

when v = 0:74. The mean number of provider visits would rise no more than four-tenths of a visit

to 0:45 when v = 0:95 and no more than half a visit to 0:46 when v = 0:74. Expenditures would

rise no more than 15% to $114 when v = 0:95 and no more than 17% to $116 when v = 0:74.

5 Conclusion

Policymakers have long been interested in identifying the consequences of uninsurance for access

to health care and the potential impacts of universal coverage (e.g., Institute of Medicine 2003).

Identi�cation of policy outcomes, however, is confounded by both the presence of unobserved coun-

terfactuals and the potential unreliability of self-reported insurance status. To account for these

two distinct types of uncertainty, we developed a nonparametric framework that extends the litera-

ture on partially identi�ed probability distributions and treatment e¤ects. Using the new analytical

results, we can provide tight bounds on the impact of universal health insurance on provider visits

and medical expenditures. As part of the paper�s contribution, we showed how to partially identify
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the conditional mean of a random variable for the case that a binary conditioning variable �in our

case health insurance �is subject to arbitrary endogenous measurement error.

Our conservative statistical approach provides informative bounds without imposing parametric

distributional assumptions. We began by corroborating self-reported insurance status for a nonran-

dom portion of the MEPS sample using outside information from insurance cards and follow-back

interviews with employers, insurance companies, and medical providers. We remained agnostic

about true insurance status for the remainder of the sample and illustrated how a variety of ver-

i�cation, monotonicity, and independence assumptions can be combined to shrink identi�cation

regions. We also weakened the strict nondi¤erential independence assumption embodied in the

classical errors-in-variables framework to allow for the possibility that using health services may

inform a patient of her true insurance status.

In July 1996, about 21% of the nonelderly population used inpatient or ambulatory medical

services. Under relatively weak nonparametric assumptions, we estimate that this proportion would

rise no more than 1:8 percentage points if everyone had insurance. We further estimate that per

capita monthly provider visits across the nonelderly population would rise by no more than four-

tenths of a visit (a 9% change), with mean expenditures per month rising by no more than 15%.

These results rely on evidence from our constructed validation sample that no more than 5 percent

of unveri�ed insurance classi�cations (representing 2 percent of the total sample) are likely to be

misreported.

In parametric studies, Miller et al. (2004) and Hadley and Holahan (2003) estimate that provid-

ing coverage to the uninsured would increase annual expenditures between 10% � 17% depending

on their speci�c assumptions. Their models assume no measurement error, and self-selection into

insured status is allowed only through a set of observed characteristics. Depending on assumptions

about the nature of selection and the potential degree of insurance reporting error, we �nd a wide

range of potential outcomes. Yet as long as reporting errors in the MEPS are relatively few and

do not increase with the level of utilization, our upper bounds are fairly tight and comparable to

estimates in the parametric studies.

Buchmueller et al. (2005) review studies of the e¤ects of insurance on the amount of service use.

Parametric studies �nd that insurance increases visits among the uninsured 16% � 106%, which

corresponds to increases among all nonelderly of 3%�20%. The highest estimates exceed our upper
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bound, but they come from studies comparing people without insurance the entire year to those

with private insurance for an entire year. Those results can be expected to be higher due to the

generosity of employment-related bene�ts compared with the mix of public and private insurance

considered in our study.

Without assumptions on the speci�c pattern of insurance classi�cation errors, we �nd that a

very small degree of classi�cation error is su¢ cient to generate uncertainty about the sign � let

alone the magnitude - of the status quo gap in use of services between the insured and uninsured

under current policies. This represents an important negative result: a high degree of con�dence

in the accuracy of the data is not enough, by itself, to be con�dent about conclusions drawn from

the data. Conclusions about di¤ering health care patterns across the insured and uninsured, for

example, appear to be critically dependent on researchers�auxiliary identifying assumptions.

The methods developed in this paper can be applied to a wide range of topics that involve

identi�cation of conditional expectations or treatment e¤ects given uncertainty about the accuracy

of the conditioning variable. Our framework, for example, o¤ers an alternative approach to Blau and

Gilleskie�s (2001) parametric analysis of the impact of employer-provided retiree health insurance

on retirement outcomes. In the Health and Retirement Study data used in their study, about 13

percent of the respondents nearing retirement age said they were unsure about whether they had

retiree insurance � thus forming a natural subpopulation of respondents to be characterized as

providing unreliable treatment information. The methods in this paper could be used to bound the

e¤ects of retiree insurance on employment, informing policymakers about the potential consequences

of allowing retirees younger than 65 to purchase Medicare coverage. More generally, we expect this

developing line of research to improve researchers�understanding of the consequences of nonclassical

measurement error for inferences, which should in turn yield more informed policy analyses.
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Appendix: Proposed values of v

Given our particular veri�cation strategy discussed in Section 2.3, let D = 1 indicate that su¢ -

cient documentation exists to potentially verify insurance status. Let A = 1 � D = 1 represent the

subset of cases for which there is su¢ cient information to potentially contradict reported insurance

status. If an individual produces an insurance card, for example, then this person is included in

the D = 1 set; without additional validation evidence, however, this case is not included in the

A = 1 subset because we do not take the failure to produce an insurance card as contradictory

information. Let B = 1 � A = 1 denote the subset for which all validation data is consistent

with reported insurance status, and let B = 0 � A = 1 denote cases where a contradiction exists.

For the reportedly insured, de�ne A = 1 as the subset of individuals reportedly covered by private

insurance from a nonfederal employer (with more than one employee) for whom all of the family�s

employers/insurance companies were interviewed. For the reportedly uninsured, de�ne A = 1 as

the subset of individuals for which the family�s employers were interviewed. For these samples, we

estimate �+ � 0:014 and �� � 0:075.28 Treating these estimates as upper bounds on the fractions

of false positives and false negatives for the unveri�ed (Y = 0) sample, we obtain v = 0:95.29 Under

these assumptions, less than two percent of the entire sample may be misclassi�ed.

This approach for identifying v = 0:95 implicitly assumes that the false positive rate among

those reporting private insurance can be generalized to the population reporting public insurance.

It also assumes that the false negative rate among those with at least one employed family member

can be generalized to the population with no employed family member. Suppose instead that (1)

we know nothing about the false positive rate among unveri�ed cases reporting public insurance,

and (2) we know nothing about the false negative rate among unveri�ed cases in which no family

member is employed. In this more conservative setting that allows for complete misreporting within

these groups, we obtain the value v = 0:74. Under these assumptions, less than 9 percent of the

entire sample may be misclassi�ed.

28See Hill (2006) for details.
29Speci�cally, the fraction of inaccurate reports among Y = 0 cases can be written as P (Z = 0jY = 0) =P1
j=0

P1
k=0 P (Z = 0jY = 0; X = j;D = 1; A = k)P (X = j;D = 1; A = kjY = 0) +

P1
j=0 P (Z = 0jY = 0; X =

1; D = 0)P (X = j;D = 0jY = 0). For cases in which we have comprehensive validation data, A = 1, yet we cannot
verify insurance status, Y = 0, we allow for the possibility that all reports are misclassi�ed: P (Z = 0jY = 0; X =
j;D = 1; A = 1) � 1 for j = 0; 1. For subsamples of unveri�ed cases in which we did not �nd contradictions (i.e.,
D = 0 or {D = 1 and A = 0}), suppose that the false positive and false negative rates do not exceed error rates for
their corresponding A = 1 subsamples: P (Z = 0jY = 0; X = j;D = 1; A = 0), P (Z = 0jY = 0; X = j;D = 0) �
P (B = 0jX = j; A = 1) for j = 0; 1 where P (B = 0jX = 1; A = 1) = 0:015 and P (B = 0jX = 0; A = 1) = 0:071.
Based on these results, we obtain the following calculation: v = 1� P (D = 1; A = 1jY = 0)� P (B = 0jX = 1; A =
1)[P (X = 1; D = 1; A = 0jY = 0)+P (X = 1; D = 0jY = 0)]�P (B = 0jX = 0; A = 1)P (X = 0; D = 0jY = 0) = 0:95.
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Table 1 

Reported Insurance Status, Service Use, Expenditures, and Verification of Insurance Status:   
Nonelderly in July, 1996 

 Insurance Status Reported by Family  

 Insured Uninsured Overall 

Percent of Sample         80.7        19.3   100.0 

Mean Ambulatory Provider Visits          0.45          0.26*       0.41 

Percent Using Hospital or Ambulatory Services         22.5        12.7*     20.6 

Mean Expenditures for Hospital and Ambulatory 
Services    $114      $36*   $99 

Percent Verified by Insurance Cards, Policy 
Booklets, Employers, or Insurance Companies        80.2        11.7*     67.0 

Number of Observations      14,772         4,079   18,851 

DATA: Medical Expenditure Panel Survey Household Component and linked Insurance Component, 
1996.  Sample members age 0 to 64 as of July, 1996.  Ambulatory provider visits include medical 
provider office visits, hospital outpatient visits, and emergency room visits. 

* Statistically different from insured at the 0.01 level, two-tailed test. 

 

 



 

Table 2 
 

Bounds on the Monthly Utilization Gap Between the Insured and Uninsured, U.S. Nonelderly Population 
        

Assuming the Following Patterns of Insurance Classification Errors: Lower Bound on the 
Proportion of 

Unverified (Y=0) 
Cases  Reported 
Accurately (v) 

(1) 
Arbitrary 
 Errors a

(2) 
Contaminated 

Sampling b

(3) 
Nondifferential 

Errors c

(4)  
Nonincreasing in 

Utilization d

 I. Probability of Using Any Hospital or Ambulatory Services 

1   [ 0.098,  0.098] † [ 0.098,  0.098] [ 0.098,  0.098] [ 0.098,  0.098] 
   [ 0.086   0.110] ‡ [ 0.086   0.110] [ 0.086   0.110] [ 0.086   0.110] 

0.95 [ 0.013,  0.195] [ 0.067,  0.175] [ 0.098,  0.105] [ 0.081,  0.112] 
 [ 0.000   0.209] [ 0.057   0.182] [ 0.086   0.118] [ 0.069   0.124] 

0.74 [-0.141,  0.252] [-0.077,  0.225] [ 0.098,  0.174] [-0.026,  0.167] 
 [-0.159   0.259] [-0.090   0.232] [ 0.086   0.193] [-0.048   0.193] 

0.50 [-0.510,  0.281] [-0.417,  0.225] [ 0.098,  0.207] [-0.317,  0.222] 
 [-0.556   0.288] [-0.457   0.232] [ 0.086   0.219] [-0.379   0.234] 

 II. Mean Number of Visits 

1 [  0.19,    0.19] [  0.19,    0.19] [  0.19,    0.19] [  0.19,    0.19] 
 [  0.15     0.23] [  0.15     0.23] [  0.15     0.23] [  0.15     0.23] 

0.95 [ -0.07,    0.43] [  0.08,    0.25] [  0.19,    0.22] [  0.15,    0.23] 
 [ -0.12     0.46] [  0.04     0.29] [  0.15     0.26] [  0.11     0.27] 

0.74 [ -0.40,    0.52] [ -0.25,    0.29] [  0.19,    0.35] [ -0.06    0.38] 
 [ -0.48     0.54] [ -0.30     0.32] [  0.14     0.38] [ -0.12    0.42] 

0.50 [ -1.75,    0.58] [ -1.25,    0.29] [  0.19,    0.38] [ -0.93,    0.45] 
 [ -2.18     0.61] [ -1.54     0.32] [  0.13     0.42] [ -1.21    0.48] 

 III. Mean Hospital and Ambulatory Expenditures ($) 

1 [    77,      77] [    77,       77] [  77,       77] [  77,       77] 
 [    49     102] [    49      102] [  48      102] [  48      102] 

0.95 [   -31,    115] [    37,     102] [  77,       78] [  71,       83] 
 [   -73     136] [    16      126] [  48      104] [  41      109] 

0.74 [ -115,    129] [   -22,     106] [  77,       88] [  35,     104] 
 [ -181     151] [   -40      129] [  48      115] [  0          127] 

0.50 [ -601,    145] [ -260,     103] [  77,       90] [-146,     120] 
 [ -932     169] [ -350      128] [  48      117] [-276      142] 

NOTES: a No restrictions; b imposes P(I*=1|Z*=0)=P(I*=1|Z*=1); c imposes P(I=1|I*) = P(I=1|I*,U); 
d imposes P(I=1|I*=0,U1) ≤ P(I=1|I*=0,U0) and P(I=1|I*=0,U1) ≤ P(I=1|I*=0,U0) for U1 ≥ U0 where 
U = use, visits, or expenditures; I* = true insurance status; I = reported insurance status; Z* = 1 if 
I* = I.  Insurance status is verified for 67% of the sample. 

† Point estimates of the population bounds. 
    ‡ 5th and 95th percentile bounds estimated with balanced repeated replication.  



Table 3 

Bounds on the Monthly Utilization Rate Under Universal Insurance Coverage: U.S. Nonelderly Population, July 1996 
 

  Assuming Monotone Treatment Response (MTR) and Monotone Treatment Selection (MTS) 

With No Monotone Instrumental Variables (MIV) and  
the Following Patterns of Insurance Classification Errors: 

With Age and Health MIV and 
Insurance Classification Errors: Lower Bound on 

the Proportion of 
Unverified (Y=0) 
Cases  Reported 
Accurately (v) 

(1) 
Arbitrary Errors, 
No Monotonicity 

Assumptions 

(2) 
Arbitrary 

Errors 

(3) 
Contaminated 

Sampling 

(4) 
Nondifferential 

Errors 

(5) 
Nonincreasing 
in Utilization 

(6) 
Arbitrary 

Errors 

(7) 
Nonincreasing 
in Utilization 

 I. Fraction Using Any Using Any Hospital or Ambulatory Services  (status quo = 0.206) 

1   [ 0.182, 0.374] † [ 0.206, 0.225] [ 0.206, 0.225] [ 0.206, 0.225]    [ 0.206, 0.225]    [ 0.206, 0.220] [ 0.206, 0.220] 
   [ 0.176  0.382] ‡ [ 0.200  0.231] [ 0.200  0.231]     [ 0.200  0.231]   [ 0.200  0.231]   [ 0.200  0.227] [ 0.200  0.227] 

0.95 [ 0.165, 0.407]     [ 0.206, 0.240] [ 0.206, 0.238] [ 0.206, 0.226]    [ 0.206, 0.230]    [ 0.206, 0.231] [ 0.206, 0.224] 
 [ 0.159  0.415] [ 0.200  0.247] [ 0.200  0.242] [ 0.200  0.232]    [ 0.200  0.236]    [ 0.200  0.237] [ 0.200  0.230] 

0.74 [ 0.153, 0.481] [ 0.206, 0.266] [ 0.206, 0.245] [ 0.206, 0.236] [ 0.206, 0.252] [ 0.206, 0.246] [ 0.206, 0.231] 
 [ 0.147  0.491]     [ 0.200  0.272] [ 0.200  0.251] [ 0.200  0.243] [ 0.200  0.258] [ 0.200, 0.252] [ 0.200, 0.238] 

0.50 [ 0.153, 0.505] [ 0.206, 0.291] [ 0.206, 0.245] [ 0.206, 0.249] [ 0.206, 0.267] [ 0.206, 0.253] [ 0.206, 0.233] 
 [ 0.147  0.513] [ 0.200  0.297]    [ 0.200  0.251] [ 0.200  0.257]    [ 0.200  0.274]    [ 0.200  0.260] [ 0.200  0.242] 

 II. Mean Number of Visits  (status quo = 0.41) 

1 [  0.30,   0.63] [  0.41,  0.45]     [  0.41,  0.45]      [  0.41,   0.45] [  0.41,   0.45] [  0.41,   0.44] [  0.41,   0.44] 
 [  0.29    0.65] [  0.39    0.47] [  0.39   0.47]      [  0.39    0.47] [  0.39    0.47] [  0.39    0.47] [  0.39    0.47] 

0.95 [  0.30,   0.67]      [  0.41,  0.49]     [  0.41,  0.46]      [  0.41,   0.45]     [  0.41,  0.46]     [  0.41,   0.47] [  0.41,   0.45] 
 [  0.29    0.69]      [  0.39    0.51] [  0.39    0.47] [  0.39    0.47]     [  0.39   0.48]     [  0.39   0.50] [  0.39   0.47] 

0.74 [  0.30,   0.80]      [  0.41,  0.54]     [  0.41,   0.46]      [  0.41,   0.48]     [  0.41,  0.50]     [  0.41,   0.50] [  0.41,   0.46] 
 [  0.29    0.82]      [  0.39   0.56]     [  0.39    0.48] [  0.39    0.49]     [  0.39   0.52]     [  0.39   0.53] [  0.39   0.49] 

0.50 [  0.30,   0.90]      [  0.41,  0.60]     [  0.41,  0.46]      [  0.41,   0.51] [  0.41,   0.55] [  0.41,   0.53] [  0.41,   0.48] 
 [  0.29    0.92]      [  0.39   0.62]     [  0.39   0.48]      [  0.39    0.53]     [  0.39   0.57]     [  0.39    0.56] [  0.39    0.51] 

 



  Assuming Monotone Treatment Response (MTR) and Monotone Treatment Selection (MTS) 

With No Monotone Instrumental Variables (MIV) and  
the Following Patterns of Insurance Classification Errors: 

With Age and Health MIV and 
Insurance Classification Errors: Lower Bound on 

the Proportion of 
Unverified (Y=0) 
Cases  Reported 
Accurately (v) 

(1) 
Arbitrary Errors, 
No Monotonicity 

Assumptions 

(2) 
Arbitrary 

Errors 

(3) 
Contaminated 

Sampling 

(4) 
Nondifferential 

Errors 

(5) 
Nonincreasing 
in Utilization 

(6) 
Arbitrary 

Errors 

(7) 
Nonincreasing 
in Utilization 

 III.  Mean Hospital and Ambulatory Expenditures  (status quo = $99) 

1 [  76,  203] [  99,  114]    [  99,  114] [  99,  114] [  99,  114] [  99,  112] [  99,  112] 
 [  59   218] [  79   133] [  79   133] [  79   133] [  79   133] [  79   132] [  79   132] 

0.95 [  76,  220]       [  99, 123]      [  99, 118]       [  99,  114]      [  99,  116] [  99,  118] [  99,  114] 
 [  59   236]       [  79  142]      [  79  136]       [  79   133]      [  79   134] [  79   136] [  79   133] 

0.74 [  76,  274]       [  99, 134]      [  99, 118]       [  99,  115] [  99,  125] [  99,  123] [  99,  116] 
 [  59   290]       [  79  156]      [  79  136]       [  79   134]      [  79   144] [  79   146] [  79   137] 

0.50 [  76,  307]     [  99,  149] [  99,  118]       [  99,  118]      [  99,  136] [  99,  131] [  99,  120] 
 [  59   323] [  79   173]    [  79   136]       [  79   139]      [  79   156] [  79   153] [  79   141] 

NOTES: Monotone treatment response: an uninsured individual’s use would not decline if she became insured; monotone treatment selection: 
under universal coverage, the currently insured would use at least as much services as the currently uninsured.  Contaminated sampling 
imposes P(I*=1|Z*=0)=P(I*=1|Z*=1), nondifferential errors imposes P(I=1|I*) = P(I=1|I*,U), and nonincreasing error rates imposes 
P(I=1|I*=0,U1) ≤ P(I=1|I*=0,U0) and P(I=1|I*=0,U1) ≤ P(I=1|I*=0,U0) for U1 ≥ U0 where U = use, visits, or expenditures; 
I* = true insurance status; I = reported insurance status; Z* = 1 if I* = I.  Monotone instrumental variables estimates assume use and 
expenditures are nondecreasing in age among those older than 30 and nondecreasing in perceived worse health status. 

†Point estimates of the population bounds 
 ‡ 5th and 95th percentile bounds estimated with balanced repeated replication 

DATA: Medical Expenditure Panel Survey Household Component and linked Insurance Component, 1996.  Sample members age 0 to 64 as of 
July, 1996.  

 



Appendix Table 1A 

“Partial Nondifferential Independence” Bounds on the Monthly Utilization Gap Between the Insured and Uninsured  
   

Degree of Deviance from Strict Nondifferential Independence (κ) aLower Bound on the 
Proportion of 

Unverified (Y=0) 
Cases  Reported 
Accurately (v) 

Strict Independence 
(κ = 0) κ = 0.05 κ = 0.10 κ = 0.15 κ = 0.20 

Arbitrary Errors 
(κ = 1) 

 I. Probability of Using Any Hospital or Ambulatory Services 

1   [ 0.098, 0.098] †   [ 0.098, 0.098]  [ 0.098, 0.098] [ 0.098, 0.098]  [ 0.098, 0.098]   [ 0.098, 0.098]   
   [ 0.086  0.110] ‡  [ 0.086  0.110]  [ 0.086  0.110] [ 0.086  0.110]   [ 0.086  0.110] [ 0.086  0.110] 

0.95 [ 0.098, 0.105] [ 0.077, 0.158] [ 0.072, 0.192] [ 0.063, 0.192] [ 0.055, 0.192] [ 0.013, 0.195]   
 [ 0.086  0.118] [ 0.064  0.172] [ 0.057  0.205] [ 0.051  0.205] [ 0.042  0.205]  [ 0.000  0.209]  

0.74 [ 0.098, 0.174] [ 0.056, 0.215] [-0.011, 0.242]   [-0.046, 0.245] [-0.056, 0.245] [-0.141, 0.252]   
 [ 0.086  0.193] [ 0.040  0.224] [-0.035  0.250]   [-0.067  0.251]  [-0.077  0.251]  [-0.159  0.259]   

0.50 [ 0.098, 0.207] [ 0.056, 0.241] [-0.037, 0.269] [-0.303, 0.271] [-0.432, 0.271] [-0.510, 0.281] 
 [ 0.086  0.219] [ 0.041  0.255]   [-0.123  0.276]   [-0.359  0.278]   [-0.473  0.281]   [-0.556  0.288]   

 II. Mean Number of Visits 

1 [  0.19,   0.19]   [  0.19,   0.19]   [  0.19,    0.19]    [  0.19,   0.19]   [  0.19,    0.19]   [  0.19,    0.19]   
 [  0.15    0.23]    [  0.15    0.23]   [  0.15     0.23]    [  0.15    0.23]   [  0.15     0.23]   [  0.15     0.23] 

0.95 [  0.19,   0.22]   [  0.15,   0.33]   [  0.14,    0.39] [  0.13,   0.39]   [  0.11,    0.39]   [ -0.07,    0.43]   
 [  0.15   0.26]   [  0.11    0.37]   [  0.10     0.41]    [  0.08    0.42]   [  0.06     0.42]   [ -0.12     0.46] 

0.74 [  0.19,   0.35]   [  0.10,   0.42] [ -0.05,    0.45]    [ -0.09,   0.45]   [ -0.12,    0.46] [ -0.40,    0.52]   
 [  0.14   0.38]   [  0.04    0.45]   [ -0.12     0.47]    [ -0.17    0.48]   [ -0.20     0.49]   [ -0.48     0.54]   

0.50 [  0.19,   0.38]    [  0.07,   0.47]   [ -0.12,    0.50]    [ -0.56,   0.50]   [ -1.16,    0.51]   [ -1.75,    0.58]   
 [  0.13    0.42]   [ -0.06    0.50]   [ -0.35     0.53]    [ -0.79    0.53]   [ -1.47     0.54]   [ -2.18     0.61]   

 



Degree of Deviance from Strict Nondifferential Independence (κ) aLower Bound on the 
Proportion of 

Unverified (Y=0) 
Cases  Reported 
Accurately (v) 

Strict Independence 
(κ = 0) κ = 0.05 κ = 0.10 κ = 0.15 κ = 0.20 

Arbitrary Errors 
(κ = 1) 

 III.  Mean Hospital and Ambulatory Expenditures 

1 [  77,     77]   [  77,     77]   [  77,     77]   [  77,     77]  [    77,     77]   [   77,      77] 
 [  48     103]    [  48     103]   [  48     103]    [  48     103]   [    48     103]   [   49    102] 

0.95 [  77,     78]    [  71,     91]   [  71,     96]    [  70,     96]   [    68,      96]   [  -31,   115]    
 [  48    104]    [  41    118]   [  41       124]    [  40    124]   [    38     124]   [  -73    136] 

0.74 [  77,     88]    [  61,     94]   [  36,     99]    [  33,   101]   [    31,    104]   [ -115,    129] 
 [  48    115]    [  30    123]   [   -1     127]    [   -4      129]   [    -7     131]   [ -181    151]    

0.50 [  77,      90]    [  61,   102] [  31,   106]    [  -66,    108]   [ -179,    109]   [ -601,   145]    
 [  48    117]    [  30    128]   [ -12    132]    [-149      134]   [ -338     136]   [ -932    169]    

a | P(I=1|I*,U)-P(I=1|I*)| < κ, where U = use, visits, or expenditures; I* = true insurance status; I = reported insurance status. 
† Point estimates of the population bounds 
‡ 5th and 95th percentile bounds estimated with balanced repeated replication 

DATA: Medical Expenditure Panel Survey Household Component and linked Insurance Component, 1996.  Sample members age 0 to 64 as of 
July, 1996.   

 



Appendix Table 2A 

“Partial Nondifferential Independence” Bounds on Monthly Utilization Rate Under Universal Insurance Coverage Assuming 
Monotone Treatment Response (MTR) and Monotone Treatment Selection (MTS) 

 

Degree of Deviance from Strict Nondifferential Independence (κ) Lower Bound on the 
Proportion of 

Unverified (Y=0) 
Cases  Reported 
Accurately (v) 

Strict Independence 
(κ = 0) κ = 0.05 κ = 0.10 κ = 0.15 κ = 0.20 

Arbitrary Errors 
(κ = 1) 

 I. Fraction Using Any Using Any Hospital or Ambulatory Services  (status quo = 0.206) 

1    [ 0.206, 0.225] b   [ 0.206, 0.225]  [ 0.206, 0.225]   [ 0.206, 0.225]  [ 0.206, 0.225]  [ 0.206, 0.225]  
   [ 0.200  0.231] c [ 0.200  0.231] [ 0.200  0.231] [ 0.200  0.231] [ 0.200  0.231] [ 0.200  0.231] 

0.95 [ 0.206, 0.226]   [ 0.206, 0.236] [ 0.206, 0.240]    [ 0.206, 0.240]   [ 0.206, 0.240]   [ 0.206, 0.240]   
 [ 0.200  0.232] [ 0.200  0.242]  [ 0.200  0.246] [ 0.200  0.246] [ 0.200  0.246] [ 0.200  0.247]    

0.74 [ 0.206, 0.236] [ 0.206, 0.250] [ 0.206, 0.263]   [ 0.206, 0.264]  [ 0.206, 0.264]  [ 0.206, 0.266]   
 [ 0.200  0.243] [ 0.200  0.257]  [ 0.200  0.269]   [ 0.200  0.271]  [ 0.200  0.271]  [ 0.200  0.272]   

0.50 [ 0.206, 0.249] [ 0.206, 0.270] [ 0.206, 0.287]   [ 0.206, 0.289]  [ 0.206, 0.289]  [ 0.206, 0.291]   
 [ 0.200  0.257] [ 0.200  0.278]  [ 0.200  0.294]   [ 0.200  0.295]  [ 0.200  0.295]  [ 0.200  0.297]   

 II. Mean Number of Visits  (status quo = 0.41) 

1 [  0.41,   0.45]    [  0.41,   0.45]   [  0.41,   0.45]    [  0.41,   0.45]   [  0.41,   0.45]   [  0.41,   0.45]   
 [  0.39   0.47]    [  0.39   0.47]   [  0.39   0.47]    [  0.39   0.47]   [  0.39   0.47]   [  0.39   0.47]   

0.95 [  0.41,   0.45]    [  0.41,   0.47]   [  0.41,   0.49]    [  0.41,   0.49]   [  0.41,   0.49]   [  0.41,   0.49]   
 [  0.39   0.47]    [  0.39   0.49]   [  0.39   0.50]    [  0.39   0.50]   [  0.39   0.51]   [  0.39   0.51]   

0.74 [  0.41,   0.48]   [  0.41,   0.51]   [  0.41,   0.52]    [  0.41,   0.52]   [  0.41,   0.52]   [  0.41,   0.54]   
 [  0.39   0.49]    [  0.39   0.53]   [  0.39   0.54]    [  0.39   0.54]   [  0.39   0.55]   [  0.39   0.56] 

0.50 [  0.41,   0.51]    [  0.41,   0.55]   [  0.41,   0.57]    [  0.41,   0.58]   [  0.41,   0.58] [  0.41,   0.60]   
 [  0.39   0.53]    [  0.39   0.57] [  0.39   0.59]    [  0.39   0.60]   [  0.39   0.60]   [  0.39   0.62]   

 



Degree of Deviance from Strict Nondifferential Independence (κ) Lower Bound on the 
Proportion of 

Unverified (Y=0) 
Cases  Reported 
Accurately (v) 

Strict Independence 
(κ = 0) κ = 0.05 κ = 0.10 κ = 0.15 κ = 0.20 

Arbitrary Errors 
(κ = 1) 

 III.  Mean Hospital and Ambulatory Expenditures  (status quo = $99) 

1 [  99,   114] [  99,   114]   [  99,   114]    [  99,   114]   [  99,   114]   [  99,   114]    
 [  79    133] [  79    133]   [  79    133]   [  79    133]  [  79    133]   [  79    133] 

0.95 [  99,   114]       [  99,   117]   [  99,   118]    [  99,   118]   [  99,   118]   [  99,   123]     
 [  79    133]      [  79    135]   [  79    137]     [  79    137]    [  79    137]    [  79    142]     

0.74 [  99,   115] [  99,   119]   [  99,   121]    [  99,   122]   [  99,   123]   [  99,   134]     
 [  79    134]     [  79    137]   [  79    140]    [  79    142]   [  79,   143]   [  79    156]     

0.50 [  99,   118]       [  99,   127]   [  99,   130]   [  99,   130]  [  99,   131]   [  99,   149] 
 [  79    139]       [  79    145]  [  79    148]   [  79    148]  [  79    149]   [  79    173]    

a | P(I=1|I*,U)-P(I=1|I*)| < κ, where U = use, visits, or expenditures; I* = true insurance status; I = reported insurance status. 
b Point estimates of the population bounds 
c 5th and 95th percentile bounds estimated with balanced repeated replication 

DATA: Medical Expenditure Panel Survey Household Component and linked Insurance Component, 1996.  Sample members age 0 to 64 as of 
July, 1996.   

 



Figure 1a 
 

Bounds on the Gap Between the Nonelderly Insured and Uninsured in their 
Probability of Using Any Hospital or Ambulatory Services in July 1996 
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NOTES: LB = 5th percentile lower bound. UB = 95th percentile upper bound.  Contaminated sampling imposes 
P(I*=1|Z*=0)=P(I*=1|Z*=1), nondifferential errors imposes P(I =1|I*) = P(I =1|I*,U), and nonincreasing 
error rates imposes P(I =1|I*=0,U1) ≤ P(I =1|I*=0,U0) and P(I =1|I*=0,U1) ≤ P(I =1|I*=0,U0) for U1 ≥ U0 
where U = use, visits, or expenditures; I* = true insurance status; I = reported insurance status; Z* = 1 
if I* = I.  Vertical dotted lines reflect proposed values of v motivated in the text.  Insurance status is 
verified for 67% of the sample. 

 
DATA:     Medical Expenditure Panel Survey Household Component and linked Insurance Component, 1996.   
                  Sample members age 0 to 64 as of July, 1996.  

 
 
 
 
 
 



Figure 1b 
 

Bounds on the Gap Between the Nonelderly Insured and Uninsured 
in their Mean Number of Provider Visits in July 1996 
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NOTES: LB = 5th percentile lower bound. UB = 95th percentile upper bound.  Contaminated sampling imposes 
P(I*=1|Z*=0)=P(I*=1|Z*=1), nondifferential errors imposes P(I =1|I*) = P(I =1|I*,U), and nonincreasing 
error rates imposes P(I =1|I*=0,U1) ≤ P(I =1|I*=0,U0) and P(I =1|I*=0,U1) ≤ P(I =1|I*=0,U0) for U1 ≥ U0 
where U = use, visits, or expenditures; I* = true insurance status; I = reported insurance status; Z* = 1 
if I* = I.  Vertical dotted lines reflect proposed values of v motivated in the text.  Insurance status is 
verified for 67% of the sample. 

 
DATA:     Medical Expenditure Panel Survey Household Component and linked Insurance Component, 1996.   
                  Sample members age 0 to 64 as of July, 1996.  
 

 
 
 
 



Figure 1c 
 

Bounds on the Gap Between the Nonelderly Insured and Uninsured 
in their Hospital and Ambulatory Expenditures in July 1996 
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NOTES: LB = 5th percentile lower bound. UB = 95th percentile upper bound.  Contaminated sampling imposes 
P(I*=1|Z*=0)=P(I*=1|Z*=1), nondifferential errors imposes P(I =1|I*) = P(I =1|I*,U), and nonincreasing 
error rates imposes P(I =1|I*=0,U1) ≤ P(I =1|I*=0,U0) and P(I =1|I*=0,U1) ≤ P(I =1|I*=0,U0) for U1 ≥ U0 
where U = use, visits, or expenditures; I* = true insurance status; I = reported insurance status; Z* = 1 
if I* = I.  Vertical dotted lines reflect proposed values of v motivated in the text.  Insurance status is 
verified for 67% of the sample. 

 
DATA:     Medical Expenditure Panel Survey Household Component and linked Insurance Component, 1996.   
                  Sample members age 0 to 64 as of July, 1996.  



Figure 2a 
 

Bounds on the Fraction of the Nonelderly Population that Would Have Used Any 
 Hospital or Ambulatory Services in July 1996 under Universal Insurance Coverage 
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 NOTES: LB = 5th percentile lower bound. UB = 95th percentile upper bound.  MTR = monotone treatment 

response: an uninsured individual’s use would not decline if she became insured.  MTS = monotone 
treatment selection: under universal coverage, the currently insured would use at least as much 
services as the currently uninsured.  Contaminated sampling imposes P(I*=1|Z*=0)=P(I*=1|Z*=1), 
nondifferential errors imposes P(I =1|I*) = P(I =1|I*,U), and nonincreasing error rates imposes  
P(I =1|I*=0,U1) ≤ P(I =1|I*=0,U0) and P(I =1|I*=0,U1) ≤ P(I =1|I*=0,U0) for U1 ≥ U0 where U = use, 
visits, or expenditures; I* = true insurance status; I = reported insurance status; Z* = 1 if I* = I.  
Vertical dotted lines reflect proposed values of v motivated in the text.  Insurance status is verified for 
67% of the sample. 

 
DATA:     Medical Expenditure Panel Survey Household Component and linked Insurance Component, 1996.   
                  Sample members age 0 to 64 as of July, 1996.  

 
 
 



 
Figure 2b 

 
Bounds on the Nonelderly Population’s Mean Number of Provider Visits 

in July 1996 under Universal Insurance Coverage 
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response: an uninsured individual’s use would not decline if she became insured.  MTS = monotone 
treatment selection: under universal coverage, the currently insured would use at least as much 
services as the currently uninsured.  Contaminated sampling imposes P(I*=1|Z*=0)=P(I*=1|Z*=1), 
nondifferential errors imposes P(I =1|I*) = P(I =1|I*,U), and nonincreasing error rates imposes  
P(I =1|I*=0,U1) ≤ P(I =1|I*=0,U0) and P(I =1|I*=0,U1) ≤ P(I =1|I*=0,U0) for U1 ≥ U0 where U = use, 
visits, or expenditures; I* = true insurance status; I = reported insurance status; Z* = 1 if I* = I.  Vertical 
dotted lines reflect proposed values of v motivated in the text.  Insurance status is verified for 67% of 
the sample. 

 
DATA:     Medical Expenditure Panel Survey Household Component and linked Insurance Component, 1996.   
                  Sample members age 0 to 64 as of July, 1996.  

 
 



Figure 2c 
 

Bounds on the Nonelderly Population’s Mean Hospital and Ambulatory Expenditures 
in July 1996 under Universal Insurance Coverage 
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NOTES: LB = 5th percentile lower bound. UB = 95th percentile upper bound.  MTR = monotone treatment 

response: an uninsured individual’s use would not decline if she became insured.  MTS = monotone 
treatment selection: under universal coverage, the currently insured would use at least as much 
services as the currently uninsured.  Contaminated sampling imposes P(I*=1|Z*=0)=P(I*=1|Z*=1), 
nondifferential errors imposes P(I =1|I*) = P(I =1|I*,U), and nonincreasing error rates imposes  
P(I =1|I*=0,U1) ≤ P(I =1|I*=0,U0) and P(I =1|I*=0,U1) ≤ P(I =1|I*=0,U0) for U1 ≥ U0 where U = use, 
visits, or expenditures; I* = true insurance status; I = reported insurance status; Z* = 1 if I* = I.  Vertical 
dotted lines reflect proposed values of v motivated in the text.  Insurance status is verified for 67% of 
the sample. 

 
DATA:     Medical Expenditure Panel Survey Household Component and linked Insurance Component, 1996.   
                  Sample members age 0 to 64 as of July, 1996.
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